
Statistical mechanics of two hard spheres in a box

Masayuki Uranagase and Toyonori Munakata
Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan

�Received 14 March 2006; revised manuscript received 14 September 2006; published 1 December 2006�

We investigate some statistical mechanical properties of a system consisting of two hard spheres in a
D-dimensional rectangular box �D=1,2 , . . . �. We give a theoretical method for computing a configurational
partition function Zc,D of this system and compare the equation of state obtained from Zc,D with molecular
dynamics simulations. Especially in D=3, we give a fully analytic expression for the pressure which turns out
to have one or more negative compressibility regions when the box size is small.
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I. INTRODUCTION

Studies on dynamical and static �phase transitions� prop-
erties of �bulk� hard sphere fluids have a long history and are
still gathering a lot of interest from many researchers �1–3�.
On the other hand, recently considerable attention has been
paid to statistical mechanical and dynamical properties of
confined systems, which contain a few particles interacting
mainly via hard disk or hard sphere potentials. These systems
are of interest from the viewpoints of �a� foundation of sta-
tistical mechanics such as ergodicity, the equipartition law of
energy, and theoretical �exact� calculations of partition func-
tions, �b� statistical mechanical properties of small systems
such as nanotubes and molecular size pores, and �c� some
dynamical properties like diffusion or hopping which are re-
lated to the entropy barrier.

First we comment on the item �a�. We have many studies
of ergodicity from both theories �4–6� and numerical experi-
ments �7–9�. Numerical investigations of ergodicity, which
are indispensable since analytic approaches to ergodicity in
many systems suffer from high barriers of mathematics, in-
clude interesting problems such as those of Fermi-Pasta-
Ulam recurrence �10� and heat conduction �11�.

For the system consisting of two or three hard disks in a
rectangular box, exact calculations of the partition functions
become possible because of the simplicity of interaction and
few degrees of freedom �12,13�. In these systems, negative
compressibility was first observed by Awazu �14� and then
this was derived from the exact partition function �12�. This
negative compressibility is similar to the one in a system
consisting of many hard disks, where the isotherm as a func-
tion of density shows a van der Waals loop �Alder’s transi-
tion� �15,16�. Now this phenomenon is observed for many
confined systems and has some profound implications on
real substances �17–19�.

Now we turn to the item �b�. For the system consisting of
molecules confined by nanotubes or molecular size pores, we
can observe many phenomena, for instance, capillary con-
densation, layering transitions, and so on �20�. Some proper-
ties of confined systems differ from those of bulk systems,
e.g., the freezing temperature of porous systems shifts from
that of bulk systems.

In the case of few-body adiabatic piston systems, where a
rectangular box is separated by a piston and there are two

hard disks in each box, the probability distribution of the
piston’s position which is computed from the configurational
partition function of each box �21�. One can see that the
probability distribution of the piston’s position is changed
from a unimodal shape to a multipeaked shape when the
width of the box is changed. Although the motion of the
piston is noisy in few-body adiabatic piston systems, one can
observe a characteristic systematic motion of the adiabatic
piston, i.e., the piston moves to a hotter region, by taking an
ensemble average of the motion of the piston �22,23�.

Finally we comment on the item �c�. When one considers
diffusion of a particle in a tube or Lorentz gas, the concept of
the entropy barrier is useful �24–27�. Zwanzig derived a
modified Fick-Jacobs equation containing the entropy barrier
and a position-dependent effective diffusion coefficient for
diffusion of a particle in a tube of varying section �24�. For
the periodic Lorentz gas, it is possible to estimate the diffu-
sion coefficient from the total phase space volume associated
with a single trap by using the idea of a random walk be-
tween traps �28�. The entropy barrier plays an important role
for other phenomena, for instance, slow relaxation of glasses,
polymer translocation �29�, protein folding �30�, and so on.
Some models which exhibit slow dynamics due to the en-
tropy barrier have been proposed �31,32�.

In all of these items, calculation of �exact� partition func-
tions plays an important role and in this paper we present a
theoretical method to calculate the partition function for two
hard sphere systems in a box for arbitrary dimension D. We
study the equation of state of this system using a configura-
tional partition function Zc,D. Moreover, we compare the
equation of state with results of molecular dynamics simula-
tions in order to investigate the ergodicity of this system
numerically.

This paper is organized as follows. In Sec. II we give a
method for computing Zc,D from Zc,D−1. Since Zc,1 is calcu-
lated easily, we are able to obtain a closed expression for
Zc,D. We explicitly calculate the exact Zc,3 by using this re-
lation. In Sec. III, we compare the theoretical results for Zc,D
with results of molecular dynamics simulations. Moreover,
other properties of this system such as the probability distri-
butions of position and momentum of a hard sphere and the
relaxation of temperature of particles are investigated. Sec-
tion IV is a conclusion.
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II. THEORY

We consider the system consisting of two hard spheres in
a D-dimensional box. The diameter and mass of each hard
sphere are d and m, respectively. The center and momentum
of the ith hard sphere �i=1,2� are denoted by qi

= �qi,1 , . . . ,qi,D� and pi= �pi,1 , . . . , pi,D�, respectively. The size
of a box in the jth direction �j=1,2 , . . . ,D� is Lj. The center
of a hard sphere can move in a box whose length in the jth
direction is lj �Lj −d due to the repulsion between a hard
sphere and a wall of the box.

The Hamiltonian of this system is given by

H = �
i=1

2 � pi
2

2m
+ Vext�qi�� + Vint�	q1 − q2	� , �1�

where Vext�qi� is a potential which confines hard spheres in a
box,

Vext�qi� = 
0, 0 � qi,j � lj, j = 1, . . . ,D ,

� otherwise,
� �2�

and Vint�	q1−q2	� is the interaction potential between two
hard spheres,

Vint�	q1 − q2	� = 
0, 	q1 − q2	 � d ,

� , 	q1 − q2	 � d .
� �3�

For the statistical mechanics of a few-body system, the
entropy S is defined using the phase space volume bounded
by the constant energy surface E, denoted by ��E�
�5,6,33,34�,

��E� =� dq1� dq2� dp1� dp2��E − H� , �4�

where ��x� is the Heaviside function,

��x� = 
0, x � 0,

1, x � 0.
� �5�

Since 	q1−q2	�d for our system, ��E� is written as

��E� = Zc,DZp,D, �6�

where Zc,D is the configurational partition function

Zc,D = �
0

l1

dq1,1�
0

l1

dq2,1 ¯ �
0

lD

dq1,D�
0

lD

dq2,D

���	q1 − q2	 − d� , �7�

and Zp,D is the momentum partition function given by

Zp,D =� dp1� dp2��E − �
i=1

2
pi

2

2m
� . �8�

For ergodic Hamiltonian systems, the entropy S is defined
using ��E� by �5,6,33,34�

S = ln ��E� = ln Zc,D + ln Zp,D, �9�

and the temperature T is obtained from S:

T = � �S

�E
�−1

= � � ln Zp,D

�E
�−1

, �10�

where we set the Boltzmann constant to 1. T is determined
by Zp,D only since Zc,D does not depend on E. At this point
we note that one can use a microcanonical ensemble by re-
placing the Heaviside function in Eq. �4� by the Dirac 	
function and by defining, at the same time, the temperature
of the system by a microcanonical ensemble average T
= 
p1,1

2 /m�MC. All the results below, both numerical and ana-
lytic, remain intact.

Moreover, the ensemble-averaged pressure on the wall
perpendicular to the jth direction, 
Pj�, is obtained from S
and T by


Pj� = T� �S

�V
�

Lk�k�j�

=
1

�
k�j

Lk

� � ln Zp,D

�E
�−1� ln Zc,D

�Lj
,

�11�

where V=�k=1
D Lk.

Zp,D is the volume of a 2D-dimensional sphere whose
radius is �2mE, i.e., Zp,D
 �2mE�D. Therefore we have
ln Zp,D=D ln E+const and T=E /D. We give an analytic ex-
pression for Zc,D below. We show the parameter dependency
of Zc,D explicitly as Zc,D�l1 , . . . , lD ;d�. Here we use lj =Lj

−d instead of Lj for convenience.

A. One-dimensional case

First, we compute Zc,1, i.e., the configurational partition
function of the system consisting of two hard rods each with
length d in a one-dimensional cylinder with length L1. The
centers of two hard rods are denoted by q1,1 and q2,1 �we
assume q1,1�q2,1�, respectively. Then the configurational
partition function Zc,1�l1 ;d� is given by �35�

Zc,1�l1;d� = �
0

q2,1

dq1,1�
0

l1

dq2,1��q2,1 − q1,1 − d�

= �
0

q2,1−d

dq1,1�
d

l1

dq2,1

=
�l1 − d�2

2
. �12�

Note that q1,1�q2,1 is retained in the dynamics, because hard
rods cannot penetrate each other.

B. General case

Next, we turn to the method for computing Zc,D. First, we
consider the case where the configuration of hard spheres
satisfies q1,j �q2,j �j=1, . . . ,D�. The configurational partition

function under this restriction, denoted by Z̃c,D, is written as
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Z̃c,D�l1, . . . ,lD;d� = �
0

q2,1

dq1,1�
0

l1

dq2,1 ¯ �
0

q2,D

dq1,D

��
0

lD

dq2,D����
j=1

D

�q2,j − q1,j�2 − d� .

�13�

We note that Z̃c,D�l1 , . . . , lD ;d�=0 if �� j=1
D lj

2�d. This is the
case where the box cannot contain two hard spheres. We
introduce the new variable q�q2−q1, and we can express
Eq. �13� as

Z̃c,D�l1, . . . ,lD;d� = �
0

l1−q1

dq1,1�
0

l1

dq1 ¯ �
0

lD−qD

dq1,D

��
0

lD

dqD����
j=1

D

qj
2 − d� , �14�

where qj is the jth component of q. We note that the Heavi-
side function in Eq. �14� satisfies the relation

����
j=1

D

qj
2 − d�

= �����
j=1

D−1

qj
2 − �d2 − qD

2� , 0 � qD � d ,

1, qD � d .
�

�15�

We now perform the integrations in Eq. �14� over q1 and
q except for qD using Eq. �15�, to obtain

Z̃c,D�l1, . . . ,lD;d� = �
0

lD

dqD�lD − qD�Z̃c,D−1

��l1, . . . ,lD−1;�d2 − qD
2 � �16�

when lD�d and

Z̃c,D�l1, . . . ,lD;d� = �
0

d

dqD�lD − qD�Z̃c,D−1

��l1, . . . ,lD−1;�d2 − qD
2 �

+ �
d

lD

dqD�lD − qD��
j=1

D−1
lj
2

2
�17�

when lD�d. Since we know Zc,1 �=Z̃c,1�, we can compute

Z̃c,D from Zc,1.

Here, we discuss the relation between Z̃c,D and Zc,D. When
two hard spheres can exchange their positions in the jth di-
rection �j=1, . . . ,D�, i.e., when it is possible that q1,j�t�
�q2,j�t� at a certain time t under the initial condition q1,j�t
=0��q2,j�t=0�, Z̃c,D is multiplied by 2, because the phase
space volume is doubled. The condition for the two particles
to be able to exchange their positions in the jth direction is
expressed by

��
k�j

lk
2 � d . �18�

Considering all j, we have

Zc,D�l1, . . . ,lD;d� = KD�l1, . . . ,lD;d�Z̃c,D�l1, . . . ,lD;d� ,

�19�

where KD satisfies

log2 KD�l1, . . . ,lD;d� = �
j=1

D

����
k�j

lk
2 − d� . �20�

Zc,2 was computed analytically before �12�, and our result is
consistent with this. Moreover we can calculate Zc,3 explic-
itly; we show this calculation in Appendix A.

III. COMPARISON WITH NUMERICAL SIMULATIONS

A. Pressure

We compare the results obtained above with those from
molecular dynamics simulations. We mainly consider the
three-dimensional case D=3, in which the pressure on the
wall perpendicular to the j=1 direction, P1, is obtained
statistical-mechanically from Eq. �11� as


P1� =
T

L2L3

� ln Zc,3

�L1
=

E

3L2L3Z̃c,3

�Z̃c,3

�l1
. �21�

We remark here that 
P1� has the physical meaning of pres-
sure only if our system satisfies the ergodic assumption.

On the other hand, the pressure can be calculated also
from molecular dynamics simulations, which we denote by

P̄1, as the time average

P̄1�t� =
1

t

�
n=1

N

2p1�n�

L2L3
. �22�

Here t is the duration of the simulation, 2p1�n� ��0� is the
momentum transfer from a hard sphere to the wall on the
right-hand side due to the nth collision, and N is the total
number of collisions in time t. Hereafter, as units of length
and mass we choose the diameter d and mass m of a hard
sphere, respectively, and we set E=D; thus the temperature
T=1 since the Boltzmann constant is set to 1.

We first investigate whether 
P1�= P̄1�t� when t is suffi-
ciently large since we are interested in the ergodicity of our
system. We always set t=107 and perform the simulations
starting from 100 different initial conditions for each data
point. As a result, statistical errors of all simulation results in
this paper are less than half the point size. In Fig. 1, we show


P1� and P̄1 for L2=5 as a function of L1 for several L3.
These are isotherms, since we consider the case with E, i.e.,

T, fixed. From Fig. 1, 
P1�= P̄1 is confirmed and P1 decreases
monotonically as L1 or L2 increases.

In the case of D=2, a negative compressibility region in
the �L1 ,L2� space near L1�L2�2 was found �12,14�. It is
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seen that when L1�2 two hard disks at q1 and q2 cannot
exchange their positions in the sense that q1,2�t��q2,2�t� for
any t �t�0� if q1,2�0��q2,2�0�. As an example, we show P1

as a function of L1 for D=2 in Fig. 2. X1 �Y1� denotes a point
where �P1 /�L1=0 and �2P1 /�L1

2�0 ��0�. At the points X1

and X2, P1 takes the same value, i.e., P1�X1�= P1�X2�. Simi-
larly P1�Y1�= P1�Y2�.

Here we consider the situation where P1 on the wall from
the environment, which we denote by P1,env, is changed
gradually from P1�Q� to P1�X1� with L1 allowed to instanta-
neously adjust its position to make P1= P1,env. From Fig. 2, it
is seen that L1 increases continuously along the curve QX1. If
P1,env decreases further below P1�X1�, L1 jumps to L1�X2�
and increases thereafter continuously along the isotherms
again. Coinversely, when P1,env increases from P1�R� to
P1�Q�, L1 decreases along the curve RY1 and, after jumping
to L1�Y2�, L1 further decreases continuously to L1�Q�. There-
fore a system with L1 in the range L1�X1��L1�L1�Y1� is not
realized at equilibrium �negative compressibility region�.

For the three-dimensional case, it would be worthwhile to
study P1 in the �L1 ,L2 ,L3� space when L2 and L3 are small
and the packing problem becomes important. Figure 3�a�
shows 
P1� and P̄1, and a part of the dashed curve in Fig.

3�a� �L3=1.95� is enlarged in Fig. 3�b�. From these figures it
is observed that the section of negative compressibility de-
pends on �L1 ,L2 ,L3� rather sensitively. That is, when L3
=1.85, the system shows negative compressibility for L1
�1.7, while compressibility is negative at L1=2 when L3
=2.05. From Fig. 3�b�, we notice that there are three negative
compressibility sections on the L1 axis for the case of L3
=1.95.

From Fig. 3, one may infer that negative compressibility
regions are distributed in a complicated way in the
�L1 ,L2 ,L3� space. Figure 4 shows a phase diagram of our
system, i.e., curves on which �P1 /�L1=0 are shown when
L2=1.7 �a�, 1.9 �b�, and 2.1 �c�. In the regions enclosed by
the curves, the compressibility is negative and physically the
state is not realized.

For the case L2=1.7, three negative compressibility re-
gions exist in the �L1 ,L3� plane. Region A1 may be regarded
as a quasi-two-dimensional case since L3 is rather small �12�.
The line L3=1.85 �L3=2.05� intersects only the region A2

�A3�. On the other hand, the line L3=1.95 intersects both A2

and A3 regions. Moreover, the line cuts the A3 region twice.
Accordingly, three negative compressibility sections appear
when L3=1.95, and this is shown in Fig. 3�b�.

For the case L2=1.9, two negative compressibility regions
exist in the �L1 ,L3� plane. Region B1 which is regarded as a

FIG. 1. P1 as a function of L1 for L2=5.0. Curves are 
P1� with

L3=4.0 �solid�, 5.0 �dashed�, and 6.0 �dotted�. Points are P̄1 with
L2=4.0 �open square�, 5.0 �closed circle�, and 6.0 �open triangle�.

FIG. 2. P1 as a function of L1 for D=2. We set L2=2.1.

FIG. 3. P1 as a function of L1 with L2=1.7. �a� Curves are 
P1�
with L3=1.85 �solid�, 1.95 �dashed�, and 2.05 �dotted�. Points are

P̄1 with L3=1.85 �open square�, 1.95 �closed circle�, 2.05 �open
triangle�. �b� Enlarged in the case L3=1.95.
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quasi-two-dimensional case, is larger than region A1. Region
B2 is formed by the merger of A3 and A2. For the case L2
=2.1, there is only one region C1 where the compressibility
is negative.

At this point we note first that it is rather difficult to make
the physical origins of negative compressibility clear. As dis-
cussed in Ref. �12�, ergodicity breaking and packing are the
key factors. Second it is remarked that one cannot obtain the
phase diagram shown in Fig. 4 if one has no analytic solution
for P1 since molecular dynamics calculations of P1 are too
time consuming.

In order to discuss the general case �D=2, 3, 4, and 5�, we
consider the case L1= ¯ =LD=L. Figure 5 shows the relation

between pressure and L. Here, the pressure on the wall, 
P�,
is given by


P� =
1

DLD−1� � ln Zp,D

�E
�−1� ln Zc,D

�l
, �23�

where l=L−d. It is noted that we perform the integration Eq.
�16� or Eq. �17� numerically for the case D�4 in order to
compute Zc,D. In each D investigated here, the relation 
P�
= P̄ seems to be valid, which indicates that our system may
be approximately ergodic.

B. Probability distributions of position and momentum

In a microcanonical ensemble, the probability distribution
of momentum is not Maxwellian �36,37�. However the prob-
ability distribution of momentum approaches Maxwellian as
the number of degrees of freedom of the system is increased.

The probability that p1,1 is between p and p+dp is de-
noted by �D�p�dp, and �D�p� is given by

�D�p� =
� dq1� dq2� dp1� dp2	�H − E�	�p1,1 − p�

� dq1� dq2� dp1� dp2	�H − E�


 �2mE − p2��2D−3�/2, �24�

with 	�x� is Dirac’s delta function.
On the other hand the probability distribution of q1,1,

which we denote by nD�q�, is given by

nD�q� =
� dq1� dq2� dp1� dp2	�H − E�	�q1,1 − q�

� dq1� dq2� dp1� dp2	�H − E�
.

�25�

We can express nD�q� using a configurational partition func-
tion, and details are given in Appendix B.

FIG. 4. Phase diagram in the �L1 ,L3� plane at L2=1.7 �a�, �b�
1.9, and �c� 2.1. Curves are ��P1 /�L1�=0 with ��2P1 /�L1

2��0 �dot-
ted� and ��2P1 /�L1

2��0 �solid�.

FIG. 5. Pressure of D-dimensional hard sphere in the box with
Lj =L �j=1, . . . ,D� vs L. Curves are 
P� with D=2 �dash-dotted�, 3

�solid�, 4 �dashed�, and 5 �dotted�. Points are P̄ with D=2 �closed
triangle�, 3 �open square�, 4 �closed circle�, and 5 �open triangle�.
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In Fig. 6, we show �D�p� and nD�q� for D=2, 3, and 4 for
the box with L1= ¯ =LD=3. Both �D�p� and nD�q� are in
agreement with molecular dynamics simulations, i.e., we
checked numerically the ergodicity for the probability distri-
butions of p1,1 and q1,1.

From Fig. 6�a�, one may expect that equipartition of en-
ergy, i.e., temperature, is satisfied for our system. To check
this we define the temperature of the jth component of the ith
sphere, Ti,j�t�, by

Ti,j�t� =
1

t
�

0

t �pi,j�s��2

m
ds , �26�

where pi,j�s� denotes pi,j at a time s. In Fig. 7, we show the
time evolution of Ti,j for the case D=3. We choose the pa-
rameters as L1=L2=L3=3 and E=3, i.e., T=1. One can see
that all Ti,j converge to 1, which means that equipartition of
temperature �i.e., energy� is satisfied.

IV. CONCLUSION

In this paper, we have investigated the system consisting
of two D-dimensional hard spheres in a rectangular box. In
particular, we have developed a method for computation of

Zc,D from Zc,D−1 and actually calculated the pressure and
probability distributions of momentum and position under
the assumption that our system is ergodic. The results ob-
tained from the ergodic assumption have been confirmed to
be in excellent agreement with molecular dynamics simula-
tions. This indicates that our system is �quasi�ergodic.

In the case D=3, we have computed Zc,3 analytically.
Moreover, we have given a detailed phase diagram in which
regions of negative compressibility are given in the space
�L1 ,L2 ,L3�. From this we can see how points of negative
compressibility are distributed in the space �L1 ,L2 ,L3�. This
diagram was obtained with use of our analytic expression for
Zc,D. Conditions for occurrence of negative compressibility
in a general D-dimensional system seem to be complicated
compared with the case D=2 �12�, and studying this condi-
tion in detail is left for future work.

APPENDIX A: ANALYTIC EXPRESSION FOR D=3

In this appendix, we compute Z̃c,3 by using results ob-

tained in Sec. II. To compute Z̃c,3 we need Z̃c,2, which is
given by �12�

FIG. 6. Probability distribution functions �D�p� �a� and nD�q�
�b� for the box with Lj =3 �j=1, . . . ,D�. Curves are results obtains
theoretically in D=2 �dashed�, 3 �solid�, and 4 �dotted�. Points are
results obtained from molecular dynamics simulations in D=2
�open square�, 3 �closed circle�, and 4 �open triangle�.

FIG. 7. Time evolution of T1,j �a� and T2,j �b� for D=3. We
choose the parameters as L1=L2=L3=3 and E=3. j=1, 2, and 3 are
plotted by solid, dashed, and dotted curves, respectively.
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Z̃c,2�l1,l2;d� =�
l1
2l2

2/4 − 
l1l2d2/4 + �l1 + l2�d3/3 − d4/8 � I1�l1,l2;d� , l1 � d,l2 � d ,

l1
2l2

2/4 + l1d3/3 + H�l1,l2;d� � I2�l1,l2;d� , l1 � d,l2 � d ,

l1
2l2

2/4 + l2d3/3 + H�l2,l1;d� = I2�l2,l1;d� , l1 � d,l2 � d ,

l1
2l2

2/4 + 
l1l2d2/4 + d4/8 + H�l1,l2;d� + H�l2,l1;d� � I3�l1,l2;d� , l1 � d,l2 � d ,
� �A1�

where

H�l1,l2;d� � −
l2
4

24
+

l2
2d2

4
−

�l2
2 + 2d2�l1

�d2 − l2
2

6

−
l1l2d2

2
arcsin� l2

d
� . �A2�

Below we can assume l1� l2� l3 without loss of general-
ity and l1

2+ l2
2+ l3

2�d2, i.e., the box is able to contain two hard
spheres.

If l2�d, Z̃c,2�l1 , l2 ;�d2−q3
2�= I1�l1 , l2 ;�d2−q3

2� for any q3

�0�q3�d�. Hence, from Eqs. �16� and �17�, Z̃c,3 is given by

Z̃c,3�l1,l2,l3;d� = �
0

d

dq3�l3 − q3�I1�l1,l2;�d2 − q3
2�

+
l1
2l2

2�l3 − d�2

8
�A3�

when l3�d and

Z̃c,3�l1,l2,l3;d� = �
0

l3

dq3�l3 − q3�I1�l1,l2;�d2 − q3
2�

�A4�

when l2�d� l3.
If l1�d� l2, we need to consider the relation between l2

and �d2− l3
2, which is the minimum value of �d2−q3

2, since

Z̃c,2�l1 , l2 ;�d2−q3
2�= I1�l1 , l2 ;�d2−q3

2� when l2��d2−q3
2 and

Z̃c,2�l1 , l2 ;�d2−q3
2�= I2�l1 , l2 ;�d2−q3

2� when l2��d2−q3
2. In

this case, Z̃c,3 is given by

Z̃c,3�l1,l2,l3;d� = �
0

�d2−l2
2

dq3�l3 − q3�I2�l1,l2;�d2 − q3
2�

+ ��d2−l2
2

l3

dq3�l3 − q3�I1�l1,l2;�d2 − q3
2�

�A5�

when l1�d� l2��d2− l3
2, and

Z̃c,3�l1,l2,l3;d� = �
0

l3

dq3�l3 − q3�I2�l1,l2;�d2 − q3
2�

�A6�

when l1�d��d2− l3
2� l2.

If d� l1, we need to consider the relation between l1 as

well as l2 and �d2− l3
2. In this case, Z̃c,3 is given by

Z̃c,3�l1,l2,l3;d� = �
0

�d2−l1
2

dq3�l3 − q3�I3�l1,l2;�d2 − q3
2�

+ ��d2−l1
2

�d2−l2
2

dq3�l3 − q3�I2�l1,l2;�d2 − q3
2�

+ ��d2−l2
2

l3

dq3�l3 − q3�I1�l1,l2;�d2 − q3
2�

�A7�

when d� l1� l2��d2− l3
2,

Z̃c,3�l1,l2,l3;d� = �
0

�d2−l1
2

dq3�l3 − q3�I3�l1,l2;�d2 − q3
2�

+ ��d2−l1
2

l3

dq3�l3 − q3�I2�l1,l2;�d2 − q3
2�

�A8�

when d� l1��d2− l3
2� l2, and

Z̃c,3�l1,l2,l3;d� = �
�

l3

dq3�l3 − q3�I3�l1,l2;�d2 − q3
2�

�A9�

when �d2− l3
2� l1� l2, where � is defined by

� = 
0, d2 � l1
2 + l2

2,

�d2 − l1
2 − l2

2, d2 � l1
2 + l2

2.
� �A10�

From Eqs. �A3�–�A9�, to show that Z̃c,3 is obtained explicitly
it is necessary to compute

Ji�u,v� � �
v

u

dq3�l3 − q3�Ii�l1,l2;�d2 − q3
2� �i = 1,2,3� .

�A11�

First J1 is written as

J1�u,v� = �
k=0

5

a1,k�
v

u

dq3q3
k + �

k=0

3

b1,k�
v

u

dq3q3
k�d2 − q3

2

= �
k=0

5

a1,k�fk�u� − fk�v�� + �
k=0

3

b1,k�gk�u;d� − gk�v;d�� ,

�A12�

where a1,k and b1,k are given by
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a1,1 =
2
l1l2d2 − 2l1

2l2
2 + d4

8
, a1,3 = −


l1l2 + d2

4
, a1,5 =

1

8
,

a1,2i = − l3a1,2i+1 �i = 0,1,2� ,

b1,1 = −
�l1 + l2�d2

3
, b1,3 =

l1 + l2

3
,

b1,2i=−l3b1,2i+1 �i=0,1�,and we obtain fk and gk as

fk�x� =
xk+1

k + 1
, �A13�

g0�x;s� =
1

2
�s2 arcsin� x

s
� + x�s2 − x2� , �A14�

g1�x;s� = −
�s2 − x2�3/2

3
, �A15�

g2�x;s� =
1

8
�s4 arcsin� x

s
� + �2x2 − s2�x�s2 − x2� ,

�A16�

g3�x;s� = −
�3x2 + 2s2��s2 − x2�3/2

15
. �A17�

Note that we consider the case s�0, x�0, and �s2−x2�0
in this paper.

Second, J2 is written as

J2�u,v� = �
k=0

1

a2,k�fk�u� − fk�v�� + �
k=0

3

b2,k�gk�u;d� − gk�v;d��

+ �
v

u

dq3�l3 − q3�H�l1,l2;�d2 − q3
2� , �A18�

where a2,k and b2,k are given by

a2,0 =
l1
2l2

2l3

4
, a2,1 = −

l1
2l2

2

4
,

b2,1 = −
l1d2

3
, b2,3 =

l1

3
, b2,2i = − l3b2,2i+1 �i = 0,1� .

The last term of Eq. �A18� is written as

�
v

u

dq3�l3 − q3�H�l1,l2;�d2 − q3
2�

= �
k=0

3 
�k�
v

u

dq3q3
k + �k�

v

u

dq3q3
k�d2 − q3

2

+ �k�
v

u

dq3q3
k arcsin� l2

�d2 − q3
2��

= �
k=0

3

��k�fk�u� − fk�v�� + �k�gk�u;�d2 − l2
2�

− gk�v;�d2 − l2
2�� + �k�hk�u;d,l2� − hk�v;d,l2��� ,

�A19�

where �k, �k, and �k are given by

�1 =
l2
4 − 6l2

2d2

24
, �3 =

l2
2

4
, �2i = − l3�2i+1 �i = 0,1� ,

�1 =
l1�l2

2 + 2d2�
6

, �3 = −
l1

3
, �2i = − l3�2i+1 �i = 0,1� ,

�1 =
l1l2d2

2
, �3 = −

l1l2

2
, �2i = − l3�2i+1 �i = 0,1� .

hk �k=0,1 ,2 ,3� are obtained as

h0�x;s1,s2� = x arcsin� s2

�s1
2 − x2� + s2 arcsin� x

�s1
2 − s2

2�
−

s1

2
�arcsin�r1�x;s1,s2�� − arcsin�r2�x;s1,s2��� ,

�A20�

h1�x;s1,s2� =
x2

2
arcsin� s2

�s1
2 − x2� −

s2

2
�s1

2 − s2
2 − x2 −

s1
2

4

��− arcsin�r1�x;s1,s2�� − arcsin�r2�x;s1,s2��� ,

�A21�

h2�x;s1,s2� =
x3

3
arcsin� s2

�s1
2 − x2�

−
s2�s2

2 − 3s1
2�

6
arcsin� x

�s1
2 − s2

2�
−

s2x�s1
2 − s2

2 − x2

6
−

s1
3

6
�arcsin�r1�x;s1,s2��

− arcsin�r2�x;s1,s2��� , �A22�

h3�x;s1,s2� =
x4

4
arcsin� s2

�s1
2 − x2�

−
s2�x2 − 2s2

2 + 5s1
2�

12
�s1

2 − s2
2 − x2 −

s1
4

8

��− arcsin�r1�x;s1,s2�� − arcsin�r2�x;s1,s2��� ,

�A23�

and we define ri �i=1,2� in Eqs. �A20�–�A23� by

r1�x;s1,s2� =
s1�x + s1� − s2

2

�s1
2 − s2

2	x + s1	
, r2�x;s1,s2� =

− s1�x − s1� − s2
2

�s1
2 − s2

2	x − s1	
.

�A24�

Note that we consider the case s1�0, s2�0, x�0, and s1
2

−s2
2−x2�0 in this paper.
Finally J3 is written as

MASAYUKI URANAGASE AND TOYONORI MUNAKATA PHYSICAL REVIEW E 74, 066101 �2006�

066101-8



J3�u,v� = �
k=0

5

a3,k�fk�u� − fk�v��

+ �
v

u

dq3�l3 − q3�H�l1,l2;�d2 − q3
2�

+ �
v

u

dq3�l3 − q3�H�l2,l1;�d2 − q3
2� , �A25�

where a3,k are given by

a3,1 = −
2l1

2l2
2 + 2
l1l2d2 + d4

8
, a3,3 =


l1l2 + d2

4
,

a3,5 = −
1

8
, a3,2i = − l3a3,2i+1 �i = 0,1,2� .

Each of the last two terms of Eq. �A25� is similar to Eq.
�A19�. Therefore, we can obtain Eq. �A11� explicitly, that is,
it is possible to compute Z̃c,3 from Eqs. �A3�–�A9� with Eqs.
�A12�, �A18�, �A19�, and �A25�. Moreover Zc,3 is easily ob-

tained from Z̃c,3 by using Eq. �19�.

APPENDIX B: PROBABILITY DISTRIBUTION OF q1,1

The probability distribution of q1,1 is given by Eq. �25�. Let us first consider the case �� j=2
D lj

2�d. If q1,1�q2,1 initially,
q1,1�t��q2,1�t� for all t�0. In this case, we write Eq. �25� as

nD�q� =
1

Z̃c,D�l1, . . . ,lD;d�
�

0

l1

dq1,1�
0

l1−q1,1

dq1�
0

l2−q2

dq1,2�
0

l2

dq2 ¯ �
0

lD−qD

dq1,D�
0

lD

dqD����
j=1

D

qj
2 − d�	�q1,1 − q�

=
1

Z̃c,D�l1, . . . ,lD;d�
�

0

l1−q

dq1G�q1� � F�q� , �B1�

where G�q1� is given by

G�q1� = �Z̃c,D−1�l2, . . . ,lD;�d2 − q1
2� , q1 � d ,

�
j=2

D

�lj
2/2� , q1 � d .� �B2�

If q1,1�q2,1 initially, q2,1�t��q1,1�t� for all t�0 and we have naturally from a symmetry argument that

nD�q� = F�l1 − q� . �B3�

When �� j=2
D lj

2�d, both cases q1,1�t��q2,1�t� and q1,1�t��q2,1�t� are possible and we obtain nD�q� as

nD�q� =
1

2Z̃c,D�l1, . . . ,lD;d�

�

0

l1

dq1,1�
0

l1−q1,1

dq1�
0

l2−q2

dq1,2�
0

l2

dq2 ¯ �
0

lD−qD

dq1,D�
0

lD

dqD����
j=1

D

qj
2 − d�	�q1,1 − q�

+ �
0

l1

dq1,1�
−q1,1

0

dq1�
0

lD−q2

dq1,2�
0

l2

dq2 ¯ �
0

lD−qD

dq1,D�
0

lD

dqD����
j=1

D

qj
2 − d�	�q1,1 − q��

=
F�q� + F�l1 − q�

2
. �B4�

So we can express nD�q� from the configurational partition functions Zc,D and Zc,D−1.
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